
Quantitative Understanding in Biology 
Module IV: ODEs 
Lecture I: Introduction to ODEs 

Ordinary Differential Equations 
We began our exploration of dynamic systems with a look at linear difference equations. This is a nice 

introduction to dynamic systems for a few reasons. First, linear systems are “well-behaved” in that they 

can be treated analytically. Second, the use of discrete time steps in difference equations allowed us to 

side-step a fair amount of calculus. 

Unfortunately, the real world is not so convenient, so we’ll need to gear up to deal with both non-linear 

systems and with true differential equations. We’ll try to keep the necessary calculus to a minimum, but 

some will be needed. Fortunately, many of the operative concepts are similar, so although the math 

may be a little more intimidating, you are now in a good position to understand it. 

We’ll begin by considering one of the simplest, and most essential, dynamic systems, and compare and 

contrast it to its discrete counterpart. Let’s return to an example we looked at previously, that of growth 

proportional to current amount or size. The discrete form of this model is… 

           

…and the solution is… 

        

To express the idea of a rate of growth proportional to current size or amount using differential 

equations, we would write… 

  

  
     

Solving this (using calculus) gives us… 

  

 
      

∫
  

 
   ∫   

          

…where C is an arbitrary constant of the integration. 
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This can be simplified into the conventional form… 

         

         

         

In the last step we have redefined the arbitrary constant for our convenience. 

To review, we have 

Discrete Continuous 

                 
 

Note that in both cases the evolution of our state variable is some value raised to a power that has to do 

with time. In the discrete case, the exponent is the number of time steps in our model simulation; this is 

a dimensionless counting number. In the continuous case, the exponent is a “scaled time”. It is the time 

of the simulation, but in ‘units of 1/λ’. You will see this motif very often in this form and in one other… 

       ⁄  

In this latter form, τ is the ‘time constant’ of the system. It has units of time, just like t, so the ratio is 

dimensionless. The ratio t/τ is sometimes referred to as the “reduced time”. 

Note that the values of the λs in the discreet and continuous cases have different interpretations. In the 

discrete model, a value of λ=1 yields a steady-state solution; the system neither ‘explodes’ nor ‘fizzles’. 

When λ > 1, the system will grow, and when 0 < λ < 1, the system will decay. 

In the continuous time model, the equilibrium condition is reached when the derivative is zero, or when 

λ=0. Negative values of λ give decaying systems and positive values of λ give growing systems. 

Exponential Decay 
The exponential decay is probably the most fundamental motif you’ll see when you study differential 

equations and dynamic systems in general. Many dynamic systems in nature that reach an equilibrium 

approach it by an exponential decay. To emphasize the nature of the decay we usually write… 

         ⁄  

…rather than taking τ to be negative. 

As above, we often write exponentials with a time constant .   makes our exponent dimensionless, and 

it is interpreted as specifying how long it takes to reach equilibrium in our system. An alternative 

measure of this that you may be familiar with is the half-life, t1/2. A half-life and a time constant 

represent the same characteristic of a dynamic system, and one can easily interconvert them.  
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As an example of how half-life and time constant are related, we’ll  revisit protein dynamics. Let’s 

consider a system where we only are concerned with protein degradation and not protein production.  

We say that the protein concentration decays exponentially, which means that the rate of degradation is 

proportional to the amount of protein present.  This is a reasonable modeling assumption in many 

contexts. We can write… 

  

  
  

 

 
  

…and the solution is… 

     
 

 
  

A recent paper calculated protein decay rates for a hundred proteins in mammalian cells (Eden et al. 

Nature, 2011).  They found in their system that the average protein half-life was 9 hours.  Let’s find the  

for this half-life. This occurs when the protein concentration is ½ of its initial value, or when p = ½ p0 

 

 
      

 
   ⁄

  

 

 
   

   ⁄

  

  (
 

 
)   

   ⁄

 
 

   
   ⁄

  (
 
 )

 

In our case t1/2 = 9 hrs, so we have… 

   
     

  (
 
 )

                  

Now that you see that  is just a linear transformation of the half-life. It is worth getting familiar with 

how quickly exponential decay occurs with respect to .  If we plot reduced x versus reduced time… 
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…we can observe that: 

 The decay falls to half its initial value in about 0.7 time constants. 

 The decay falls to one-third of its initial value in about 1.1 time constants. 

 In two time constants, the value has decayed to about 13% of its initial value. 

 In three time constants, the value has decayed to about 5% of its initial value. 

Note that an exponential decay never “finishes” as it asymptotically approaches zero. However, as it is 

useful to think about dynamic events, we can make an arbitrary definition about how much of a decay 

has to have been achieved before an event is ‘over’. If we define the end of an event as the time when it 

reaches 95% recovery to the equilibrium value, we see that events take about three time constants. If 

you want to use a different cutoff, that is OK. What is important is that the length of an event is on the 

order of a few time constants. For example, if you define your cutoff as 99.44% recovery, you’ll find that 

events last 5.2 time constants. This line of reasoning leads us to the very important realization that τ 

tells us “how long stuff takes to happen in our system”. 

Note that exponential decays don’t always decay towards zero, and don’t always decay from higher 

values to lower values. For example, consider the system 

  

  
    (    ) 

The general solution to this system is… 

             

A few particular solutions to this system for different values of x0, c, and t are shown in the figure below. 

From inspection of the plot only, you should be able to estimate τ for the red (bottom) and blue (middle) 

curves.  The green (upper) curve may be a little trickier because it is difficult to estimate by eye what 

value the curve is asymptotically approaching; how might you reliably determine τ for this case? [Ans: 

from top to bottom, τ = 2, 0.5, 1]. 
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Formulating Systems of ODEs 
The art of modeling dynamic systems usually begins with a description of a system and a transformation 

of that description into a set of differential equations. If the system considers spatial variability in 

addition to temporal variability, you will usually end up with a set of partial differential equations. For 

this section of the class we will focus on systems that do not consider spatial variability, and therefore 

will result in ordinary differential equations. 

Let’s consider an example of how a system of ODEs can be formulated from a system description. We’ll 

return to our basic enzyme-substrate system: 

   
      
↔     

  
→     

We can write the differential equation of each species by simple application of the law of mass action. 
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We should note that the above differential equations assume the system is at constant volume. As this is 

not a chemistry class, we will just accept this. 

To simulate the above system, we need the model parameters. In this case, there are three: k1, k-1, and 

k2. We also need initial conditions for the state variables. In this case, four would be needed: [E]0, [S]0, 

[ES]0, and [P]0. 

Running a Simulation: Basic Theory 
The most common way of thinking about running a simulation of a system of ODEs is the Euler method. 

We “discretize” the system by turning the differential equations into the difference equation analogs. 

The discrete analog of the last equation in our system would be… 

    

  
         

                        

                        

A similar technique can be applied to the other equations in the system. These difference equations can 

be solved quite straightforwardly by simple iteration. If we are lucky and the resultant system of 

equations is linear and can be cast in matrix form, we can bring the techniques we learned in the 

previous section to bear. Unfortunately, this is not the case in this system. The second equation 

discretizes as follows: 

    

  
                   

                                      

Sadly, the product of the two state variables precludes a linear, matrix formulation of the system. 

Once we have discretized our differential equations, we can choose a sufficiently small Δt and use a 

computer to iterate over time. 

This method, elegant and simple as it is, has a pitfall. The devil is in the phrase ‘sufficiently small’. Often 

sufficiently small means really, really small. Sometimes it is impractically small. The biggest impact of 

this is often computer time; you may need lots of steps to iterate your system. However, too small can 

get you into trouble with the floating point accuracy of your computer too. Additionally, the simple Euler 

integration method can introduce systematic errors. 
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To see the problem, let’s consider the example of a simple exponential 

  

  
 (   ) 

In this case we know the analytical solution to be (for the case where x0 = 0) 

        

This is an exponential approach to x=1. The discrete version of the differential equation is 

       (    )     

It is easy to show that for every step, no matter how small Δt is, this equation will always over-predict 

the change in x. 

It can be shown that Euler integration has errors that are O(Δt2). Thus, to get to a “reasonable” answer, 

one may need to choose a very small Δt. 

Running a Simulation: Practical Theory 
There are many schemes that try to fix the problem. The so-called predictor-corrector methods use an 

Euler-like method to predict the new value of x. The derivative is then evaluated at the new value, and is 

used to correct the prediction in some manner. 

Probably the most important practical method for integrating systems of ODEs is the fourth order 

Runge-Kutta method; this is often abbreviated as RK4. It can be shown that the RK4 method has an error 

of O(Δt5). While there are several RK algorithms of different orders, RK4 is the most commonly used. If 

someone says they are using the Runge-Kutta algorithm without specifiying the order, you can be sure 

they are using RK4 (p<0.0001). The equations for RK4 are given here for completeness only… 
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Another important enhancement is the idea of variable step size. The idea is that if things are not 

changing very quickly in your simulation, you can take larger step sizes. This can be a huge time-saver. 

Implementation of the logic to achieve variable step sizes is beyond the scope of this course. 

Running a Simulation: Practical Methods 
The good news is that Matlab implements RK4 with variable step size so you don’t have to worry about 

the details. The key to getting Matlab to do the heavy lifting is that you need to write a Matlab function 

that gives the derivatives of each state variable. This function is stored in a m-file. For example, the 

following m-file will give the derivative to an exponential approach to a specified value with a specified 

time constant (File: test1_func.m): 

function [ dydt ] = test1_func(t, y, y0, tau) 
%TEST1_FUNC Simple exponential decay for testing RK4 ODE solver 
%   Provides derivatives for an exponential decay to y0 with time constant tau. 
dydt = [ -(y - y0)/tau ]; 

 

Then, in Matlab, with this on the path, we write… 

start = 0; 

y0 = 5; 

tau = 1; 

tspan = [0 10]; 

[t y] = ode45(@test1_func, tspan, start, [], y0, tau); 

plot(t,y) 

 

It is also instructive to inspect the output arrays t and y. You’ll see that the time step is not uniform. 

Warning: plot(y) will give you erroneous results! 

A more complex example – our Michaelis-Menten model (file: mm.m): 

function [ dydt ] = mm( t, y, k1, k_1, k2 ) 
%MM derivatives for Michaelis Menten kinetics 
%   MM kinetics:  E + S <----k1,k_1----> ES --k2--> E + P 
%   state vars are: y(1) = S, y(2) = E, y(3) = ES, y(4) = P 

  
% Fetch variables 
S = y(1); 
E = y(2); 
ES = y(3); 
P = y(4); 

  
dydt = [ -k1 * S * E + k_1 * ES; 
         -k1 * S * E + k_1 * ES + k2 * ES; 
          k1 * S * E - k_1 * ES - k2 * ES; 
          k2 * ES 
          ]; 
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And then in Matlab: 

start = [1, 0.1, 0, 0]; 

k1 = 0.1; 

k_1 = 0.1; 

k2 = 0.3; 

tspan = [0 1000]; 

[t, y] = ode45(@mm, tspan, start, [], k1, k_1, k2); 

plot(t,y); 

hold on; 

legend('S', 'E', 'ES', 'P'); 

 

Observe how quickly the complex forms and reaches a “quasi-equilibrium” concentration. Then observe 

that the product forms with a much slower time constant. Imagine how many simulation steps you 

would need if the whole simulation were run with a time step necessary to get the first bit of the 

simulation correct. 


